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Research suggests “write-to-learn” tasks improve learning outcomes, yet constructed-response 
methods of formative assessment become unwieldy with large class sizes. This study evaluates natural 
language processing algorithms to assist this aim. Six short-answer tasks completed by 1,935 students 
were scored by several human raters using a detailed rubric and an algorithm. Results indicate 
substantial inter-rater agreement using quadratic weighted kappa for rater pairs (each QWK > 0.74) 
and group consensus (Fleiss’ Kappa = 0.68). Additionally, intra-rater agreement was estimated for 
one rater who had scored 178 responses seven years prior (QWK = 0.88). With compelling rater 
agreement, the study then pilots cluster analysis of response text toward enabling instructors to 
ascribe meaning to clusters as a means for scalable formative assessment.  
 
INTRODUCTION 

Effective formative assessment is indispensable for students and instructors to monitor 
learning (GAISE, 2016; Pearl et al., 2012). Furthermore, it is critical for a citizen statistician to be able 
to communicate statistical ideas effectively, both as a consumer and as a producer of statistical 
information (Gould, 2010). One avenue through which students develop these effective 
communication skills is through written tasks. In fact, research has linked “write-to-learn” tasks to 
improved learning outcomes in science and mathematics, yet constructed-response methods of 
formative assessment such as minute papers and comprehension questions become unwieldy for 
instructors with large class sizes (e.g., hundreds, thousands) (Woodard et al., 2020). A human–
machine collaboration may provide the means necessary to improve the feasibility of formative 
assessment at scale as well as the quality of feedback provided to large enrollment students (Basu et 
al., 2013). In the current literature, AI-assisted formative assessment feedback has primarily only been 
presented for essays or long-answer tasks, and in disciplines other than statistics (see, e.g., Attali, et 
al., 2008; Page, 1994). This study serves as the groundwork for leveraging natural language processing 
(NLP) algorithms to assist formative assessment using short-answer tasks in large enrollment courses.  
 
LITERATURE REVIEW 

Effective assessment feedback should be timely (Garfield et al., 2008). Popular solutions for 
large enrollment classes often rely upon selected-response tasks (e.g., multiple choice) as a vehicle for 
formative assessment. For example, the Guidelines for Assessment and Instruction in Statistics 
Education (GAISE) (2016) recommend clickers and similar student response systems, coupled with 
engagement strategies to encourage careful reflection before and after responding, as a means for 
scalable formative assessment. Still, selected-response formats tend toward lower levels of Bloom’s 
Taxonomy such as recall and recognition tasks (Basu et al., 2013; Bloom, 1956; Garfield et al., 2008). 
The format also invites guessing, which impairs the instructor’s ability to differentiate between the 
demonstration of the desired learning outcome as opposed to a lucky guess, leading question, or 
ineffective distractors (Jordan & Mitchell, 2009). By comparison, short-answer response tasks allow 
students to articulate their reasoning and have greater potential to invoke higher levels of thinking on 
Bloom’s Taxonomy (Theobold, 2021).  

When students reason and communicate through writing, it serves as a vehicle for sharpening 
understanding (Graham et al., 2020). Continual practice with communicating statistical information, 
ideas, and thinking in this manner is thought to improve statistical literacy and learning outcomes as 
well as promote retention (Basu et al., 2013). Such tasks enable students to explain concepts, justify 
conclusions, apply knowledge to new scenarios, and form disciplinary connections in their own words 
(Bloom, 1956; Garfield et al., 2008; Graham et al., 2020). Students with varying degrees of 
correctness and understanding warrant different types of feedback (Basu et al., 2013; Jordan & 
Mitchell, 2009). Short-answer response tasks also allow instructors to more easily identify student 
misconceptions and address student misunderstandings that may otherwise have gone undetected 



(Basu et al., 2013). In this way, instructors can more closely monitor students’ learning and 
understanding, resulting in effective formative assessment (GAISE, 2016; Pearl et al., 2012). 

A human–machine collaboration is a promising mechanism to assist rapid, individualized 
feedback at scale (Basu et al., 2013). Natural language processing (NLP) methods can achieve reliable 
classification (e.g., incorrect, partially correct, correct) of short-answer responses, which could be 
followed by automatic clustering of similar student responses for formative assessment. Reliable 
classification means the algorithm assigns appropriate scores to the responses, aligning with the pre-
established scoring reliability metrics. Successful clustering would group student responses into 
clusters that are as homogenous within, and as heterogeneous between, as possible. The objective 
would be to iteratively refine the clustering so an instructor can attach meaning to clusters of responses 
(Basu et al., 2013). By exploiting the efficiency of technology for short-answer tasks, students in large 
enrollment classes can access a type of timely, personalized feedback believed to enhance the learning 
experience in smaller classes (Basu et al., 2013; Wright, 2019).  

Scoring reliability is the broad term for assessing the consistency with which raters score, or 
label, a given response. Inter-rater reliability refers to comparing the reliability of scores among one or 
more trained human raters, while intra-rater reliability refers to comparing the reliability of scores 
from one human rater at two different points in time (Gwet, 2008). With the emergence of automated 
rating systems, an algorithm can serve as one of the trained raters being considered in a scoring 
reliability analysis (Basu et al., 2013). An algorithm’s reliability can be similarly scrutinized by 
comparing the reliability of a classification algorithm to that of human raters. Since human raters are 
fallible and prone to inconsistencies and biases, there is the need to establish a more reasonable 
standard of comparison aligned to the reliability expected of competent human raters when judging the 
performance of an algorithm (Page, 1994; Woodard et al., 2020).  

Toward the goal of improving the balance between the instructor burden and student benefit 
associated with formative assessment, this research study aims to address the following questions: 
(RQ1) What level of agreement is achieved among trained human raters labeling (i.e., scoring) short-
answer tasks? (RQ2) What level of agreement is achieved between human raters and an NLP 
algorithm? (RQ3) What sort of NLP representation leads to good clustering performance, and how 
does that interact with the classification algorithm?  

 
METHODS 

This study utilized de-identified extant data from a previous study, which solicited responses 
to a group of short-answer tasks from post-secondary students enrolled in introductory statistics 
courses (Beckman, 2015). The data consist of responses to six short-answer tasks provided by 1,935 
students representing a total of 29 class sections for 16 unique courses at 15 distinct institutions that 
are mostly, but not exclusively, located in the USA.  

(RQ1) The 1,935 students from the 2015 study, and their associated responses to each task, 
were divided among four persons with sufficient intersection to evaluate rater agreement. The four 
persons possess varied levels of experience with statistics education that would be common within an 
instructional team. Rater A was an experienced statistics instructor and the author of the tasks’ 
prompts and associated scoring rubrics. Rater B was an experienced statistics instructor. Rater C was a 
statistics graduate student with some experience as a teaching assistant in statistics and had previously 
taught an undergraduate mathematics course. Rater D was a statistics graduate student teaching 
assistant. The study sought to evaluate all student responses available, with quality responses from at 
least 50 students for the analysis of agreement between each possible combination of raters for RQ1.  

Using a prior analysis to estimate the approximate proportion of earnest response attempts in 
the data, each desired rater comparison was allocated 63 randomly selected students to target 
approximately 50 quality responses. Therefore, three raters (i.e., Rater A, Rater B, Rater C) were 
assigned to review responses by 750 students such that each pair of raters would share an intersection 
of 63 randomly selected students in addition to a distinct set of 63 randomly selected students shared 
by all three raters. After the initial allocation exercise, but before the scoring process, a fourth 
evaluator (i.e., Rater D) joined the study team and was assigned the 252 students previously assigned 
for multiple raters (63 x 3 pairwise + 63 three-way).  

The only constraint on the allocation of students to each rater was imposed to preserve a 
unique opportunity to examine intra-rater agreement for Rater A. Using the same rubric in service of 



an entirely different research objective, Rater A had scored a random sample of 178 responses in 2015 
(see Beckman, 2015). The sample allocation to each rater in the present study simply verified that at 
least 50 of the students scored by Rater A in 2015 would again be evaluated by Rater A in the current 
study. Rater A had not revisited the scoring for those tasks during the 7 years elapsed.   

Each evaluator used a detailed rubric to score the assigned student responses (see Beckman, 
2015). Student responses were either given a score of 0: incorrect, 1: partial, or 2: correct, and 
examples of student responses for each classification were provided in the rubric. After all responses 
had been scored, confusion matrices were tabulated to determine the percentage agreement as well as 
the amount of one-level and two-level discrepancies. Scoring reliability was estimated using quadratic 
weighted kappa (QWK) for pairwise agreement and Fleiss’ kappa to measure consensus among three 
or more raters. Viera and Garrett (2005) describe a heuristic interpretation of rater agreement 
represented by various kappa values: kappa < 0 is less than chance agreement; 0 < kappa < 0.2 is slight 
agreement; 0.2 < kappa < 0.4 is fair agreement; 0.4 < kappa < 0.6 is moderate agreement; 0.6 < kappa 
< 0.8 is substantial agreement; 0.8 < kappa < 1 indicates almost perfect rater agreement.  

(RQ2) The scoring reliability measures for the four trained human raters served as a baseline 
with which to evaluate the algorithm performance and validate the reliability of automated scoring. 
For machine learning, the 7,258 unique task-responses were randomly split four ways: 90% were split 
into the typical division of training (72%), development (9%) and test (9%), with an additional 10% 
held in reserve for more rigorous testing. The 653 task-responses in the test set were selected to 
include responses with the highest agreement among human raters (e.g., 458 had unanimous 
agreement among three or four raters); the remaining task-responses were randomly assigned to the 
training, development, and reserve sets. Two NLP algorithms were compared for accuracy using a 
subset of student responses. The first being a logistic regression combined with a Long Short-Term 
Memory (LSTM) for learning vector representations, and the second being the Semantic Feature-Wise 
Transformation Relation Network (SFRN) (Li et al., 2021).  

(RQ3) The goal of the clustering is to determine if a set of student responses that have the 
same correctness can be grouped into semantically similar clusters.  The two NLP classification 
algorithms each learn a distinct vector representation on training data that supports better 
classification. Neither of these learned representations are optimal for clustering, which is a process to 
discover relationships in data, rather than to learn an a priori classification task. Therefore, we 
compare the clustering of the two types of learned vector representations with a third approach that 
applies a pre-trained phrase-embedding method to produce much lower dimension vectors. We 
compare all three using different clustering methods to develop insight into the best combination for 
semantic coherence of output clusters.  

A manual pilot of human-generated clustering consisted of two reviewers independently 
evaluating the responses of 100 students on inference tasks 2B and 4B from the Introductory Statistics 
Understanding and Discernment Outcomes assessment (Beckman, 2015), and then capturing the 
feedback they (each reviewer) would provide to each student response. Based on the grades assigned 
during the reliability study, the 100 students were randomly chosen among those who had earned 
partial credit on task 2B after having earned either partial or full credit on task 2A. The same 
procedure was applied independently to randomly select 100 responses to task 4A and 4B. As such, 
these students were deemed to have shown incomplete mastery of the task and therefore may likely 
benefit from instructor feedback. 
 
RESULTS 

(RQ1) When considering the inter-rater agreement among the three trained human raters 
(Raters A, C, & D), the pairwise quadratic weighted kappa (QWK) estimates were between 0.79 and 
0.83 and Fleiss’ Kappa for the three-way comparison was 0.70 as shown in Table 1. These measures 
indicate substantial inter-rater agreement among the three human raters (Viera & Garrett, 2005). At the 
time of this writing, only data for tasks 2A and 2B could be evaluated for Rater B, but the results are 
similarly strong. The pairwise QWK between Rater B and other raters were between 0.71 and 0.74. 
The Fleiss’ Kappa value for the four-way comparison on tasks 2A and 2B was 0.62. When considering 
the intra-rater agreement for one evaluator, on a subset of the 178 responses scored from the study 
seven years prior, the pairwise QWK was 0.88. This measure indicates almost perfect intra-rater 
agreement following seven years elapsed (Viera & Garrett, 2005). 



 
Table 1. Reliability comparisons among three human raters (A, C, D) and an NLP algorithm (SFRN) 

 
Rater Comparison Measure of Reliability 
Rater A & Rater C QWK = 0.834 
Rater A & Rater D QWK = 0.797 
Rater C & Rater D QWK = 0.792 

Rater A (2015) & Rater A QWK = 0.880 
Rater A & SFRN QWK = 0.787 
Rater C & SFRN QWK = 0.815 
Rater D & SFRN QWK = 0.740 

Rater A & Rater C & Rater D Fleiss’ Kappa = 0.698 
Rater A & Rater C & Rater D & SFRN Fleiss’ Kappa = 0.678 

 
(RQ2) The SFRN algorithm achieved much higher classification accuracy than LSTM (83% 

vs. 72%) when compared to human ratings as ground-truth. Other classifiers were tested but had much 
lower agreement. The QWK values for pairwise comparisons between SFRN and human raters were 
between 0.74 and 0.82 and the Fleiss’ Kappa value for the four-way comparison among the algorithm 
and three human raters was 0.68, as shown in Table 1. Therefore, there was substantial inter-rater 
agreement among the raters, including the algorithm (Viera & Garrett, 2005).  

(RQ3) SFRN learns a high-dimension (D=512) vector representation on training data, which 
as noted above produces high agreement with humans on a test set. Multiple experiments with K-
means and K-medoids clustering of the test data showed that SFRN led to more consistent clusters 
when the representation is retrained (0.62), in comparison to other classifiers. Each class (correct, 
partially correct, incorrect) for each question is clustered separately. Consistency is measured as the 
ratio of all pairs of responses in a given class per question that are clustered the same way on two runs 
(in the same cluster, or not in the same cluster). However, the highest consistency (0.88; D=50) was 
achieved by generating a new representation for each response using WTMF (Guo & Diab, 2012), a 
matrix factorization method that produces static representations. 

Analysis of human-generated feedback by our two reviewers indicated that Reviewer 1 
favored remarks related to statistical concepts at issue (only), while feedback from Reviewer 2 
provided the same along with a specific quote from the student’s response. Reviewer 2 then parsed her 
feedback to compare her remarks related to the statistical concepts (only) with the feedback of 
Reviewer 1. Figure 1 shows cross-tabulation of the feedback distribution for the two reviewers for the 
initial feedback (left) compared with the same analysis for the portion of feedback related to the 
statistical concept at issue (right).  

 

  
 

Figure 1. (Left) Initial feedback comparison of two human reviewers; (Right) Feedback comparison of 
two human reviewers with quoted remarks from student responses removed by Reviewer 2  

 
The verbatim feedback from each reviewer is encoded for the purpose of Figure 1 since 

verbatim remarks were generally a sentence or more and thus not readable as labels in the figure. Note 
the feedback diversity before (left) and after (right) Reviewer 2 parsed remarks to omit direct quotes 
from the student responses. As a result, for task 2B both reviewers provided feedback reminding the 



student to consider an inferential method, which would compare an observed result against a chance, 
i.e., “null,” model in 43 of the 100 responses (Figure 1, right). Similarly, both reviewers shared a 
remark cautioning against use of an arbitrary threshold as a substitute for inference in 21 of 100 
responses (Figure 1, right). In task 4B, both reviewers shared feedback reminding the student to 
consider an inferential method which would compare an observed result against a chance, i.e., “null”, 
model in 79 of the 100 responses. Feedback variability is to be expected, especially when the student 
response might benefit from more than one remark. For example, six students (Figure 1, right) were 
encouraged by Reviewer 1 to contemplate the role of a chance model, while Reviewer 2 cautioned 
against an arbitrary threshold as a substitute for inference. Either may be appropriate for a given 
student response, and the choice may simply be a matter of preference in any given case. 
 
DISCUSSION 

In addition to laying the groundwork for NLP-assisted formative assessment feedback for 
short-answer tasks in large enrollment courses, this work presents a careful study of inter-rater 
agreement including varied experience typical for an instructional team of a large course, intra-rater 
agreement after seven years elapsed, and comparison between algorithm performance and domain 
experts using a detailed rubric. Given the high reliability of the algorithm, it’s important to investigate 
how an environment could be created for teaching assistants and the algorithm to collaborate to 
achieve both high reliability on the scores and high-quality feedback for students. The substantial 
scoring reliability and feasibility of clustering performance shown in this study suggest that a human–
machine collaboration offers a promising opportunity for continued research toward a large-class 
formative assessment using short-answer tasks that approaches small class quality and instructor 
burden. The similarities between frequent feedback pairs provided by the two reviewers represent 
evidence for clustering among human-generated feedback and motivate further investigation.  

 There is intrinsic value in a rigorous evaluation of rater agreement for instructors of all class 
sizes. Investigating discrepancies and inconsistencies in scoring could lead to new insights about the 
nature of rater biases. Although this study focuses on large enrollment classes in particular, success in 
these efforts creates an opportunity to study formative assessment interventions and mechanisms 
associated with desired learning outcomes that have implications for smaller and intermediate class 
sizes as well (Basu et al., 2013). For example, instructors of all class sizes would benefit by being able 
to focus their efforts on tasks other than grading, such as designing projects or studying how students 
respond to different types of feedback (Jordan & Mitchell, 2009). The use of an automated rater would 
also allow for the study of feedback effect and revision effect to determine whether students’ learning 
experience is enhanced when given the opportunity to revise their responses (Attali & Powers, 2008). 
The nature of the precise feedback provided is critical to formative assessment, whether shared with 
the student to advance their own understanding or aggregated by the instructor to monitor and address 
key misconceptions held by many students. For example, both Reviewers found that they tended to 
favor a most appropriate next step for each student rather than enumerating every apparent flaw. 
Perhaps the former would be more easily digested by a student, while the latter could be more 
complete and better represent aggregate needs of the class for the instructor. Such work is a necessary 
precursor to any rigorous study of optimal and/or scalable feedback to improve student outcomes. 

The study does have a few limitations that warrant mention. The study includes incomplete 
data for Rater B. The analysis does have data from Rater B with respect to two of the six tasks, but 
comparisons including Rater B are limited without the full data on the remaining tasks. In the 2015 
study, students came from many classes of varying sizes, and not a single large class as desired. There 
is reason to believe this limitation would introduce noise into the data, likely resulting in conservative 
estimates of reliability and feasibility. A key limitation of the NLP methods is the tradeoff between 
algorithms that achieve high reliability on classification of correctness based on neural network 
methods that learn high dimension vector representations, and the opposing requirement for low 
dimension representations to yield denser clusters with greater differentiation between clusters. Thus, 
we will pursue multiple avenues, such as dimension reduction prior to clustering, or a separate post-
processing step that adopts an independent low dimension representation. 
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